INTRODUCTION

In response to the increase in anthropogenic CO₂ emissions that are ¹³C-depleted, the carbon isotopic composition (δ¹³C) of atmospheric CO₂ decreased by 0.02 ‰ yr⁻¹; consequently, the δ¹³C values of dissolved inorganic carbon (δ¹³CDIC) in sea water also decreased (the so-called Suess Effect). The North Atlantic ocean is considered as one of the strongest anthropogenic carbon dioxide (CO₂) sink (Fig.1), as a consequence of the large heat loss and deep convection processes during winter, as well as a strong biological activity in summer and fall. In this study, we describe new δ¹³CDIC observations obtained in the Irminger Basin during the OVIDE cruises (2002 and 2006) and we compare them with historical data (TTO-NAŠ 1981) to estimate the oceanic ¹³C Suess Effect and relate this signal with an independent anthropogenic carbon assessment.

DATASET IN THE IRMINGER BASIN

![Fig 2. Pattern of the main a) circulation and b) water masses in the Irminger Basin delimited by their density boundaries (69).](image)

Fig. 2.

Table 1: Statistics for predictive DIC and δ¹³CDIC estimated by a Multi Linear Regression.

<table>
<thead>
<tr>
<th>δ¹³CDIC</th>
<th>δ¹³CDIC</th>
<th>δ¹³CDIC</th>
<th>δ¹³CDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>0.987</td>
<td>0.982</td>
<td>0.903</td>
<td>0.736</td>
</tr>
<tr>
<td>132</td>
<td>19</td>
<td>276</td>
<td>30</td>
</tr>
</tbody>
</table>

eMLR equations:

δ¹³CDIC = (a₀, a₁, a₂) * X + (b₀, b₁, b₂) * X + (c₀, c₁, c₂) * X

eMLR results:

δ¹³CDIC = 1000 * (DIC / SHOW - 1)

ANTHROPOGENIC CARBON CHANGES IN THE IRMINGER BASIN:

WHAT DO WE LEARN FROM δ¹³CDIC?

Virginia RACAPÉ1, Catherine PIERRE1, Nicolas METZL1, Claire LO MONACO1, Gilles REVERDIN1, Pascal MORIN2, Fiz F. PEREZ3, Aida F. RIOS³ and Marcos VAZQUEZ-RODRIGUEZ4

1LOCEAN-IPSF, Université Pierre et Marie Curie, Case 100, 4 place Jussieu, Paris, 75252 Cedex 05, France
2Station Biologique de Roscoff, CNRS UPMC, BP 74, 29682 Roscoff, France
3Instituto de Investigaciones Marinas, CSIC, Eduardo Cubello 6, 36208 Vigo, Spain
4Oceanography Department - SOEST, University of Hawaii at Manoa, 1000 Pope Rd, Honolulu, HI 96822, Hawaii

Figure 1: Column inventory of anthropogenic CO₂ in the global ocean (Sabine et al., 2004)

Figure 2: Pattern of the main a) circulation and b) water masses in the Irminger Basin delimited by their density boundaries (69).

Figure 3: Vertical distribution of δ¹³CDIC (‰ vs V-PDB) collected in summer 2002 and 2006 during the OVIDE cruises between the East Greenland Coast (42.5°W) and the Reykjanes Ridge (30°W).

- Maxima δ¹³CDIC in surface waters enhanced by biological activity
- Minima δ¹³CDIC (0.5%o-0.5‰) in the upper 1000m along the Greenland Continental shelf

Figure 4: Mean δ¹³CDIC values (‰) versus mean anthropogenic C (µmol kg⁻¹) for each water masses. C was estimated by Perez et al. (2008)

In all water masses we observe a decline in δ¹³CDIC related to anthropogenic CO₂ increase.

Figure 5: Vertical distribution of ΔDIC (µmol kg⁻¹) and Δ¹³CDIC (‰) as a function of density (69). ΔDIC (µmol kg⁻¹) and Δ¹³CDIC (‰) are respectively calculated from files 3 - 8 and files 4 - 8 applied either on the TTO dataset (black square) or on the OVIDE 2006 dataset (open square).

Figure 6: a) Estimated anthropogenic CO₂ increase (ΔDIC/µmol kg⁻¹ and anthropogenic δ¹³CDIC decrease (Δ¹³CDIC/‰)) in the Irminger Basin (41.5°N-37.5°N) in period from 1981 to 2006. b) DIC/µmol kg⁻¹ and δ¹³CDIC/‰ relationships in the different water masses (Fig 3): EMLR applied on the 2006 dataset. Black contour lines show the Silicate distribution (µmol kg⁻¹); white contour lines symbolize the density boundaries (69).

Figure 7: Strong relationship between anthropogenic CO₂ and the ocean ¹³C Suess effect related to the water masses.

This encourage us to investigate further the change in ventilation and export production.

ACKNOWLEDGMENTS:

We thank the OVIDE crew for helping in the ¹³C sampling. A. Olson and A. Taguef for their help with the compilation of historical dataset. This study has also been recently supported by CNRS/INSU (project OCEANS-C15).